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The plant-derived ansa-macrolactam maytansitjé &nd its pst Agel  Agel Sacl
microbial counterparts, the ansamitoci@{ are antitumor agents Wild type _L
of extraordinary potency. Their biosynthesis is of interest as a means asm18 asm19 asm20
of introducing structural diversity into this class of compounds. It
involves the assembly of 3-amino-5-hydroxybenzoic acid (AHBA) Pst "‘fe' Sacl
as the starter unit by addition of three acetates, three propionates, HGF052 —
and one unusual “glycolate” extender unit into a polyketiddyich asm18 asm19*  asm20

then undergoes further downstream processing. This knowledgeFigure 1. Genomic map oBsm18 asm19 andasm20in A. pretionsum
allowed us to clone and sequence the genes required for ansamitocitild-type and HGF052. The black box indicates the 549Awel DNA
biosynthesis, including a set of type-I polyketide synthase (PKS) fragment that is deleted iasm19 of A. pretiosumHGF052.

genes §smABCUD), from the producer organisnfctinosynnema fo-cHeHe
pretiosumssp.auranticumATCC 31565° 9
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The antitumor activity of the maytansinoids is absolutely Figure 2. Reaction catalyzed by the acyltransferase Asm19, and the further
dependent on the presence of an ester side chain at positioch C-3;StePs in the biosynthetic conversion into ansamitocins.

although there is considerable leeway in its structuviaytansinol complicated by line broadening, possibly due to the presence of

(3), a natural product both in plaritand in A. pretiosunf is two slowly interchanging conforme#$,and complete signal as-

biologically inactive. A large number of congeners with different signment’ by COSY, HSQC, and HMBC experiments required
acyl groups have been isolated fraémpretiosumand the product 5 analysis of spectra recorded at elevated temperature in two

pattern responds to the addition of specific side-chain Precursors ¢, ents. DMSO and acetone. The data revealed the presence of
to the fermentatio&? implying an acyltransferase of broad substrate both methoxy groups (at 3.33 and 3.93 ppm) and the absence
range. A candidate genasm19 has been identified in thasm of the N-methy! group, which typically appears in maytansinoids
cluster® The deduced amino acid sequence of Asm19 (378 aa) at 3.0 ppm. Compared to those frthe signals aby 2.96 ppm
shows similarity to MdmB (36%) and to AcyA (35%), both of and oc 60.8 and 66.7 ppm, assigned to H-5 and to C-4 and C-5,

which are macrolide :@_-acyltransferases frorﬁtreptomycekﬂz_ respectively, have been replaced dy5.48, ¢ 125.1 (C-5), and
suggesting thaasm19might code for an acyltransferase attaching a very broad signabc at about 114 ppm (C-4), indicating the

the ansamit.ocin ester §ide chain. . . presence of a double bond in place of the epoxide function. All
To test this hypothesis, we constructed mutant HGFO52 in which w0 yher signals are consistent with a maytansinol structure,

asml9was inactivated by an internal 549 bp in-frame deletion identifying the accumulated compound Nsdesmethyl-4,5-dese-
(Figure 1)1 The phenotype of HGF052 was analyzed in fermenta- poxymaytansinol4) (Figure 2)°

tions supplemented with isobutyrate, conditions under which the * i o t1t that mutant HGF052 accumulates a nonesterified
wild-type organism produces almost exclusively ansamitocit®-3. ;<2 mitocin instead of confirms the tentative assignment of
HGFO052 no longer produce?] but it accumulated a new, slightly  Agm19 as the 3-acyltransferase catalyzing the attachment of the
more polar compoundX on Gg 18.5 min vs 21.8 min foB). The ester side chain of the ansamitocins. Since the compound ac-

mass _spectral pattern identified the new cqmpound as a maytansi-, . uiated is no8, but its N-desmethyldesepoxy derivativie the
noid, its mass of 534 Dalton, 30 mass units less than thasfor acylation, contrary to expectation, is not the final step of the

indicated that it not only lacked the ester side chain but also an biosynthesis, but occurs prior fé-methylation and epoxidation
additional methyl group and an oxygen. NMR analysis was The naturally occurring maytansinol is therefore not a biosynthetic

* Correspondence authors: E-mail: (T.Y.) yu@u.washington.edu, (H.G.F.) mtermed_late’ but a. .Shunt meFab(_)“te presumably ansmg from
floss@chem.washington.edu. hydrolysis of 3-esterified ansamitocins. However, it is possible that
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Asm19 can still catalyze the acylation 8fto ansamitocins such
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recovery enzyme which recycles the shunt metab8liack into
the biosynthetic manifold. Since this question is of some practical
interest for the enzymatic preparation of ansamitocins with different
ester side chains, we examined whetBean serve as a substrate
for Asm19.

We carried out bioconversion experiments with a mutant,
HGFO051, carrying a truncatessmB encoding the secorasmPKS
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Supporting Information Available: Stereoviews of the conforma-

tions of maytansine and compoudd and LC-MS tracings of the
reactions of Asm19 witht and different acyl-CoA substrates (PDF).
This material is available free of charge via the Internet at http://
pbs.acs.org.
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amplified by PCR using primers which introduced suitable restric-
tion sites, ligated into vector pRSETB (Invitrogen), and expressed
in E. coli BL21(DE3)/pLysS (Stratagene) under the control of the
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series of incubations was conducted using a corresponding empty
vector; no conversion was detected. Both alone and in competition
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normal fermentation ansamitocin P-3 is a more prominent product
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greatly by precursor availability in addition to the specificity of
the enzyme. The further characterization of this enzyme will be
reported in due course.
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